US ERA ARCHIVE DOCUMENT

Current Methodologies and Best Practices for Preparing Ocean Going Vessel Emission Inventories Used in Preparing the U.S. ECA Proposal for U.S.EPA

Louis Browning, ICF International Veracruz, Mexico April 16, 2010

ECA Inventory Methodology

- ECA Inventory used Corbett STEEM grid model
- STEEM not accurate around ports
 - Assumes ships come in at full speed (no maneuvering)
 - Does not include hotelling emissions
- **▼ EPA developed port inventories of 117 US Ports**
- Grid cells around ports were replaced with new port inventories
- Air Quality Modeling performed on integrated grid
 - Corbett STEEM + New Port Inventories

New Port Inventories

- EPA used newest port emission inventory methodology
- Ocean going vessel movements were modeled at 117 US ports
- Transit zones (lower speed areas approaching ports due to navigational hazards) were determined for each port
- Time in modes were calculated for
 - Cruise
 - Transit
 - Maneuvering
 - Hotelling

Sources for New Port Inventories

Current Methodologies and Best Practices – EPA

 Current Methodologies and Best Practices for Preparing Port Emission Inventories – April 2009

Starcrest Inventories

- 2005 Puget Sound Air Maritime Emissions Inventory -- 2007
- 2005 Port of Los Angeles Air Emissions Inventory -- 2007
- 2005 Port of Long Beach Air Emissions Inventory -- 2007
- 2006 Port of San Diego Air Emissions Inventory 2007

Older EPA Guidance Documents

- Commercial Marine Activity for Deep Sea Ports in the United States --1999
- Commercial Marine Activity for Great Lakes and Inland River Ports in the United States – 1999
- Commercial Marine Emission Inventory Development -- 2002

Emissions Calculations

$$E = P \times LF \times A \times EF$$

```
Where E = Emissions (grams [g])
```

P = Maximum Continuous Rating Power (kW)

LF = Load Factor (percent of vessel's total power)

A = Activity (hrs)

EF = Emission Factor (g/kWh)

Data Sources

Pilot Data Distance Between Docks Average Speeds for Each Tme-in-Mode Tug Assist Speeds and Behavior

Marine Exchange/ Port Authority

- Port Name
- LMIS Number
- Vessel Type
- VWT
- Vessel Speed
- Flag of Registry
- Date of Arrival
- Time of Arrival
- Date of Departure
- Time of Departure

Lloyd's Register of Ships

- Ship Name
- LMIS Number
- Ship Type
- DWT
- Vessel Speed
- Flag of Registry
- Engine Type
- Engine Power
- Engine Speed
- Build Date

Calculated Average Vessel Movements

- Calls
- · Shifts
- Time-in-Mode
 - Cruise
 - Reduced Speed Zone
 - Maneuvering
 - Hoteling

Average Vessel Characteristics

- Ship Type
- Engine Type
- DWT

matching

parameters

- Engine Power
- Vessel Speed
- Engine Speed
- Build Date

Ship Types

Auto Carrier Ocean Going Tug

Barge Carrier Passenger

Bulk Carrier Reefer

Container RoRo

General Cargo Tanker

Miscellaneous

Marine Engine Types

Fengine Size

- Category 1
 - < 5 liters/cylinder</p>
 - Mostly small harbor craft and recreational propulsion

Category 2

- > 5 liters/cylinder and < 30 liters per cylinder
- OGV Auxiliaries, Harbor craft, smaller OGV propulsion

Category 3

- > 30 liters per cylinder
- OGV propulsion

Marine Engine Types

Engine Speed

- Slow Speed
 - Direct Drive
 - Mostly 2 stroke
- Medium Speed
 - Geared Drive
 - Mostly 4 stroke
 - > 300 rpm
- High Speed
 - Geared Drive
 - 4 stroke
 - > 1400 rpm

Other Engine Types

- Steam Turbine
- Gas Turbine

Flectric Drive

 Auxiliary Engines used for both propulsion and auxiliary power

Auxiliary Engines

	Average		Auxiliary			
Ship Type	Propulsion Engine (kW)	Num	Power Each (kW)	Total Power (kW)	Engine Speed	to Prop Ratio
Auto Carrier	10,700	2.9	983	2,850	Medium	0.266
Bulk Carrier	8,000	2.9	612	1,776	Medium	0.222
Container	30,900	3.6	1,889	6,800	Medium	0.220
Cruise	39,600	4.7	2,340	11,000	Medium	0.278
General Cargo	9,300	2.9	612	1,776	Medium	0.191
RORO	11,000	2.9	983	2,850	Medium	0.259
Reefer	9,600	4.0	975	3,900	Medium	0.406
Tanker	9,400	2.7	735	1,985	Medium	0.211

Activity

Cruise

- From open ocean to Reduced Speed Zone (RSZ)
- At service speed

Reduced Speed Zone

- From pilot pick-up or other point to breakwater
- At reduced speed, usually 9 to 12 knots

Maneuvering

- From breakwater to berth
- At slow speeds 3 to 8 knots slower coming in than out

Hotelling

- Time at berth or anchorage with propulsion engine off
- Auxiliaries usually running unless cold ironing

Propulsion Engine Emission Factors (g/kWh)

Engine	Fuel		Emission Factors (g/kWh)							
Type	Туре	Sulfur	NOx	PM ₁₀	PM _{2.5}	НС	СО	SOx	CO ₂	BSFC
	RO	2.70%	18.10	1.42	1.31	0.60	1.40	10.29	620.62	195
SSD	MDO	1.00%	17.00	0.45	0.42	0.60	1.40	3.62	588.79	185
330	MGO	0.50%	17.00	0.31	0.28	0.60	1.40	1.81	588.79	185
	MGO	0.10%	17.00	0.19	0.17	0.60	1.40	0.36	588.79	185
	RO	2.70%	14.00	1.43	1.32	0.50	1.10	11.24	677.91	213
MSD	MDO	1.00%	13.20	0.47	0.43	0.50	1.10	3.97	646.08	203
IVISD	MGO	0.50%	13.20	0.31	0.29	0.50	1.10	1.98	646.08	203
	MGO	0.10%	13.20	0.19	0.17	0.50	1.10	0.40	646.08	203
	RO	2.70%	6.10	1.47	1.35	0.10	0.20	16.10	970.71	305
GT	MDO	1.00%	5.70	0.58	0.53	0.10	0.20	5.67	922.97	290
GI	MGO	0.50%	5.70	0.35	0.32	0.10	0.20	2.83	922.97	290
	MGO	0.10%	5.70	0.17	0.15	0.10	0.20	0.57	922.97	290
	RO	2.70%	2.10	1.47	1.35	0.10	0.20	16.10	970.71	305
ST	MDO	1.00%	2.00	0.58	0.53	0.10	0.20	5.67	922.97	290
31	MGO	0.50%	2.00	0.35	0.32	0.10	0.20	2.83	922.97	290
	MGO	0.10%	2.00	0.17	0.15	0.10	0.20	0.57	922.97	290

Propulsion Load Factors

$$LF = (AS/MS)^3$$

Where LF = Load Factor (percent)

AS = Actual Speed (knots)

MS = Maximum Speed (knots))

Minimum value 2%

Low Load Adjustment Factor

Auxiliary Engine Load Factors

Ship-Type	Cruise	RSZ	Maneuver	Hotel
Auto Carrier	0.13	0.30	0.67	0.24
Bulk Carrier	0.17	0.27	0.45	0.22
Container Ship	0.13	0.25	0.50	0.17
Cruise Ship	0.80	0.80	0.80	0.64
General Cargo	0.17	0.27	0.45	0.22
Miscellaneous	0.17	0.27	0.45	0.22
OG Tug	0.17	0.27	0.45	0.22
RORO	0.15	0.30	0.45	0.30
Reefer	0.20	0.34	0.67	0.34
Tanker	0.13	0.27	0.45	0.67

Auxiliary Engine Emission Factors (g/kWh)

Fuel	Emission Factors (g/kWh)								
Type Sul	Sulfur	NOx	PM ₁₀	PM _{2.5}	НС	СО	SOx	CO ₂	BSFC
RO	2.70%	14.7	1.44	1.32	0.40	1.10	11.98	722.54	227
MDO	1.00%	13.9	0.49	0.45	0.40	1.10	4.24	690.71	217
MGO	0.50%	13.9	0.32	0.29	0.40	1.10	2.12	690.71	217
MGO	0.10%	13.9	0.18	0.17	0.40	1.10	0.42	690.71	217

New IMO Regulations

Area	Year	Fuel Sulfur	NOx
	Today to Jul 2010	15,000 ppm	
Emission Control	2010	10,000 ppm	
Area	2015	1,000 ppm	
	2016		Tier 3 Aftertreatment*
Global	Today to Jan 2012	45,000 ppm	
	2012	35,000 ppm	
	2020	5,000 ppm	
	2011		Tier 2 Engine Controls*

^{*} Today's Tier 1 NOx standards range from approximately 10 to 17 g/kW-h, depending on engine speed. The Tier 2 standards represent a 20% NOx reduction below Tier 1, and the Tier 3 standards represent an 80% NOx reduction below Tier 1.

NOx Emission Reductions for IMO Regulations

Analysis	Glo	obal	Emission Control Area		
Year	Main	Auxiliary	Main	Auxiliary	
2005	9.8%	9.4%	9.8%	9.4%	
2010	12.5%	12.3%	12.5%	12.3%	
2015	19.8%	19.4%	19.8%	19.4%	
2020	24.3%	25.2%	40.4%	41.6%	
2025	26.8%	28.3%	57.2%	58.9%	
2030	28.5%	30.5%	68.2%	70.1%	

Emission Reduction Calculations

- Emission Inventories from ships calculated using EPA Best Practices Document
- Available at

http://www.epa.gov/sectors/sectorinfo/sectorprof iles/ports.html

Contact Info

Dr. Louis Browning

Technical Director

ICF International

LBrowning@icfi.com

